Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption.
نویسندگان
چکیده
The fluorescence from a turbid medium such as biologic tissue contains information about scattering and absorption, as well as the intrinsic fluorescence, i.e., the fluorescence from an optically thin sample of pure fluorophores. The interplay of scattering and absorption can result in severe distortion of the intrinsic spectral features. These distortions can be removed by use of a photon-migration-based picture and information from simultaneously acquired fluorescence and reflectance spectra. We present experimental evidence demonstrating the validity of such an approach for extracting the intrinsic fluorescence for a wide range of scatterer and absorber concentrations in tissue models, ex vivo and in vivo tissues. We show that variations in line shape and intensity in intrinsic tissue fluorescence are significantly reduced compared with the corresponding measured fluorescence.
منابع مشابه
Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model.
An inverse Monte Carlo based model has been developed to extract intrinsic fluorescence from turbid media. The goal of this work was to experimentally validate the model to extract intrinsic fluorescence of three biologically meaningful fluorophores related to metabolism from turbid media containing absorbers and scatterers. Experimental studies were first carried out on tissue-mimicking phanto...
متن کاملTurbidity-free fluorescence spectroscopy of biological tissue.
We present a method based on photon migration of extracting intrinsic fluorescence spectra from turbid media, using concomitantly measured fluorescence and reflectance. Intrinsic fluorescence is defined as fluorescence that is due only to fluorophores, without interference from the absorbers and scatterers that are present. Application to fluorescence spectra taken with tissue phantoms and huma...
متن کاملFluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption.
The fundamental limits for detection and characterization of fluorescent (phosphorescent) inhomogeneities embedded in tissuelike highly scattering turbid media are investigated. The absorption and fluorescence contrast introduced by exogenous fluorophores are also compared. Both analyses are based on practical signal-to-noise ratio considerations. For an object with fivefold fluorophore concent...
متن کاملDisentangling chlorophyll fluorescence from atmospheric scattering effects in O2 Aband spectra of reflected sunlight
[1] Global retrieval of solar induced fluorescence emitted by terrestrial vegetation can provide an unprecedented measure for photosynthetic efficiency. The GOSAT (JAXA, launched Feb. 2009) and OCO‐2 (NASA, to be launched 2013) satellites record high‐resolution spectra in the O2 A‐band region, overlapping part of the chlorophyll fluorescence spectrum. We show that fluorescence cannot be unambig...
متن کاملExperimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence.
The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 40 25 شماره
صفحات -
تاریخ انتشار 2001